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UNIFORM CONVERGENCE RESULTS FOR CAUCHY 
PRINCIPAL VALUE INTEGRALS 

PHILIP RABINOWITZ 

ABSTRACT. A general uniform convergence theorem for numerical integration 
of Cauchy principal value integrals is proved. Seven special instances of this 
theorem are given as corollaries. 

1. INTRODUCTION 

In this paper we study the uniform convergence with respect to the parame- 
ter A of various numerical methods for evaluating the Cauchy principal value 
(CPV) integral 

(1) I(wf; A):= w(x)f(x) dx, -1 <A< 1, 

where w is the Jacobi weight function 

(2) w(x) := (1 -x)&(1 +x)f, a, ,B > -1. 

In a previous paper [11], the author showed that if f is H6lder continuous, 
f E HA, 0 < <1, where 

H,:= Ig:co)(g; t) < Atl2, A > O, O < sl< 1} 

and wo(g; t) is the modulus of continuity of g on J [-1, 1], 

wi(g; t)= sup lg(xl)-g(X2)1, 
1x1 -X21<t 

xI ,x2EJ 

and {fn} is a sequence of piecewise linear approximations to f, then 

(3) I(wrn; A) - 0 as n - oc, uniformly in A E(-1, 1), 

if 

(4) A + y > O, 
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where r, (x) :=f(x) - fn (x) and 

y := min(cx, ,B, O). 

Here, we have a sequence of partitions [In given by [In -1 = xo, < x1, < 
< xp ,n n= 1 with Pn+ > Pn , hin = Xi+,n -xXin and Hn = maxo<i<P 1 hin 

and assume that lim n-0o Hn = 0. The function fn satisfies fn(xin) =f(xin) 
i = 0, * , Pn , and is linear on every subinterval Jin : [xin, xi+I, n I 

The proof of (3) used the following three properties of rn which were demon- 
strated in [ 1]: 

(i) rn(?1) = 0, 
(ii) llrnlI = w(f; Hn), where lIgIl := maxxej Ig(x)I, 

(iii) ow(rn; t) < Cot(f; t) for some C > 0. 
In this paper we will extend this result to the case where fn is a generalized 

piecewise polynomial as defined in [ 12], a cubic spline interpolating f at equally 
spaced knots, a modified cubic interpolating spline of deficiency 2 as defined 
in [9] or a quadratic spline interpolant as described in [10]. We shall also give 
conditions for (3) to hold when fn is a Lagrange interpolating polynomial, a 
Hermite-Fejer interpolating polynomial or a Bernstein polynomial. In these 
cases, the conditions for uniform convergence are weaker than in the previous 
cases. All these convergence results are corollaries of a general convergence 
theorem which we give in the next section. 

There are some other uniform convergence results in the literature. The 
strongest are those by Criscuolo and Mastroianni [3, 4] for integration rules 
based on polynomial approximation. Interestingly enough, their convergence 
conditions are similar to those given here, as we shall see. 

2. A GENERAL UNIFORM CONVERGENCE THEOREM 

In this section, we shall state and prove a general uniform convergence the- 
orem for CPV integrals. The proof follows along the lines of that in [1 1]. 

Theorem 1. Let f E H, on J and assume that fn is an approximation to f 
such that 

(a) rn(+1) = 0, 
(b) Ir = O(An), 0 < I < 4u, where {An } is a sequence ofpositive numbers 

such that limn-- oo An = 0, 
(c) ce)(rn; t) = O(t17), O < o<,u 

Then (3) holds if 

(5) p+y>O, 
where p:= min(a, v). 
Proof. Using the well-known device of subtracting the singularity (see, e.g., [6, 
p. 184]), wewrite 

I(wrn; A) = w(x) rn (X) dx + rn ()I(w; A) T + T 
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We niow show that T1 = T1 (A) and T2 = T2(A) both converge uniformly to 0 
for all A e (-1, 1) if (5) holds. 

Consider first T2 := r,(A)I(w; A)). Since r,(l) = 0, we have rQ(A) < 
co(rn ; 1 - A) = 0((1 - A)f) . Furthermore, in a neighborhood of A = 1, 

I(W, ) { 0((1 -_ )a) + C if a is not an integer, 
0 O(jlog(l -A) )) if a is an integer 

(13, ?4.62]. 
Hence, we can find s > 0 sufficiently small so that for all A in [1 - s, 1] 

T2 = 0((1 - )a+cl log(l1-A) 1) < c 

uniformly in A if (5) holds. Similarly, we can find 3 > 0 such that for all A in 
[-1, -1 +s] 

T2 = O((l + A)a+f I log(l + A))) < e 

uniformly in A . Finally, since I(w; A) = 0(1) in [-1 + s, 1 - s] and IlrII = 

o(l) as n -t oc, we conclude that T2 = o(l) uniformly in A as n Xo. 
We now turn to T1, which we write as 

T Jhn (x) dx + j n/(x dx+ hn (x) dx := I + I2 + 31 

xf u x f U 

where hn(x) := w(x)(rn(x) -rn ())/(x- A) and U:= [-1, -1 +r]U[l - r, 1] 
for some r, r to be determined below. 

Consider now the integral 
-l+r -l+r hn(x) dxl = O | + x) ix - A)1-1dx) 

-0 (f+(l + x)Y+G'dx) < e for r sufficiently small. 

Similarly, I f1K_ hn(x)dxt < e for r sufficiently small, so that jII I < 2e . As for 
I2 

h h(x) dx < EmJaxw (x) 2 11rn I I x-A?> Al I ix-?AI> n x)x xEJ-U w(x.2r IIj jxA ?d 
xOU xOU 

= O(Av IlogAnj) = o(l) as n -- oo. 

Finally, 

c(rn, jx - Al) 
i|-~ ~ ~hn(x) dx = O( iX-dAx ( x-).I 

xOU x0U 

= 0 iX_Al Ix - Al dx) 

o(l) as n -x oo uniformly in A, since An = o(l). 
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Hence, I(wrn; A) can be made arbitrarily small as n -- ox, uniformly in A E 

(-1, 1). 

3. PARTICULAR EXAMPLES OF THEOREM 1 

In this section, we derive uniform convergence results for a variety of ap- 
proximations fn to f which we state as a series of corollaries. 

Corollary 1. Let f E H. and let {fn } be a sequence of piecewise polynomials 
defined as follows: For every partition I-,I we define a partition nin of each 
subinterval 'Jin} i ,.. Pn - 1 , by 

Ilin Xin =xl.o < xii < ... < xi m = Xi+l,n 

subject to the conditions mni < M for all i and n and Xin) - x(_n) > dh._ ni JJ+1 ij' - ini,j+ 
for some d > O and all i, j, and n. fn(x) is defined on Jin as the Lagrange 

(n) 
interpolating polynomial of degree mni agreeing with f(x) at the points x., 
j= O,1, ... mni. Then (3) holds if (4) holds and if Hn ?- as n - o. 

Proof. Since x60 = xOn -1 and Xpn n m = xpn= 1, condition (a) in 
Theorem 1 holds. We show condition (b) with An = Hn and v =,u by writing 

mni 

fn(x) -= 
n 

E x E Jin X 
k=O 

where 
mn X-(n) 

Ii(k(X) (n) 
j= ik Xij 

jik 

which implies that lik(x)I < d- for all i, k and n and all x E J. Hence, 

trn (X) I= (f(x)- f(xiki) )li(x) < (M +n 
k=O 

as asserted. Finally, we show condition (c) with a = ,u as follows: Using the 
Newton divided difference form for the interpolating polynomial, we have that, 
for any t E iin 

fn (t) =f(x(n )) + P1 (t)f [x(n ), x(n )+ 2(t)f[x ), x , x(2 ) 
+ o * m () io i il I+ * 2t) * Xi * I i2ni +~ + ~(t)f[Xn), (n) (n) 

where 
i-l 

Pj(t) := ll(x - X(n)) 1, .. mn 
k=O 

Since all the zeros of Pl (t) lie in Ji, we have that 
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We now show by induction that if c(f; t) < At' for some A > 0, then for 
any distinct values yj such that 

fYI 5 ,k}{X(n) (n), .... . ....,x(n) } , >.. k2, 

we have 

(7) If Lv1, ..., Y,I < A2 d-k+lh#-k+l. 

Indeed, for k = 2 

If LY1, 12v1 = f(Y2) -f(y2)I/Ly1 - < Ah2n/dhin = Ad ihin, 
and for k > 2 

If IYI1, Y2, ...*, Ykll I f IYI *** Yk_lJ - f Y2, ... I Yk1I1IyI Yki 

< 2(A2 d h.7k+2 )/dhin = A2 d k+lhk+l. 

Consider now u, v E Jgn I u < v. Then 
t . (n) (n) (n) ~~~~~~(n) n 

fn(V) - fn(U) = (V - u){Pi()f [xi(gI, xi)] + P(42)f[Xi I( Xi X X,2 

ID'(%\Cr (n) (n) 
ni ni ni 

u < Xj < V . 

Using the bounds (6) and (7), we see that 

Ifn (V) - fn (u) I < (v - u)A[d 1 + 2d-2 + ... + 2mni-l d-mn ]hll - 

< BIv - u , 

where B :=A[d- +2d-2 + 21+ d-M. 

If uEJin' veJn, i< j,then 

fn (V) - fn(U) = fn(V) - fn(Xjn) + fn(Xjn) - fn(Xi+ ,n) + fn(Xi+ ,n) - fn(U) 

Since fn (Xkn) = f((Xkn) for all k, we have that 

Ifn(v)-fn(u)l < BIV-Xini" + AlXjn-Xi+1,nI + Blxi+ ,n-U 
< 3BIv - uI". 

Finally, 

Irn(v) - rn(U)I < If(v) - f(u)I + Ifn(V) - fn(U)I 

< Aiv - uIp + 3BIv - ulA < 4BIv - uIp , 

establishing condition (c). This proves the corollary. 

Corollary 2. Let f E Hp and let {fn } be a sequence of cubic splines with knots 

tin = -1 + 2i/(n + 1), i = 0, , ... ., n + 1, which interpolate f at all the knots 

and also at the points 2(tOn +tIn) and I(tnn n+t,n). Then (3) holds if(4) 

holds. 

Proof. Since fn interpolates f at tOn = -1 and tn+ I, = 1, condition (a) of 

Theorem 1 holds. By Lemma 1 in [5], lImrnI = O(co(f; n1)), so that condition 
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(b) holds with An =n1 and v = u. By Lemma 4 in [5], w(rn; t) = 0(n 8+TtT) 
for any positive T < It . Hence, by condition (c) in Theorem 1, (3) holds if 
T + y > 0. However, if (4) holds, we can find a positive T < u such that 
T + y > 0. Hence, it follows that (3) holds if (4) holds, as asserted. 

Corollary 3. Let f E H,A and let {fn} be a sequence of modified interpolating 
cubic splines of deficiency 2 defined on a sequence of partitions {fln} as follows 
[9]: For any rF,n let gn be the piecewise linear function defined in ? 1. Now, for 

L R 
EJ, uhta o every i, i=,... Pn - 1, choose points ti E Ji-1,n, t EJi, such that for 

some positive K < 1/2 

|Xin - t 
L R 

Xnt K min(hi- 1, n " hi) jx1 -1~ = jxin - tit =inmn()1 . 

Let Si(x) be defined on [tif, tR] as the cubic Hermite interpolating polynomial 
satisfying 

Si(t)= gn(tL), S(t) = (t) 

Si (t') =gn (ti') ' i(ti ) = gn(ti) 

Then fn is defined by 

fn (X) {Si (x), x E t t' ,i =1 . Pn- 

gn (X) otherwise. 

If Hn -0 as n 0 then (3) holds if (4) holds. 

Proof. Since fn(+1) = gn(+1) = f(?1), condition (a) of Theorem 1 holds. By 
equation (5.1) in [9], ttrnlt - O(Hn), so that condition (b) holds with An = H 
and v = ,u. Finally, by equation (5.3) in [9], 

trn(x) - rn(y)I < CH#-'rjx - yjr 

for any positive T < 4u. Hence, our conclusion follows as in the proof of 
Corollary 2. 

Corollary 4. Let f E H. and let {FIrn} be a sequence of partitions. Let Ain E 
[d, 1 -d], i = 0, ... ,Pn - 1, fora fixed d, 0 < d < 1/2, and define tin := 

)inxin + (1 - in)xi+ n, Let fn be the quadratic spline definedfor x e Jin by 

fn(x) = (1 -Cin(x))f(xin) + Cin(x)f(xi+i,n) + (x- Xin -hinCin(x))a, 
where a is an arbitrary real number and 

f(x - x ~2/( - h? x x < t1, 
Cn ._) J(-in) (l -Ain'h.2 X in < in' 

-(i+1, n-X ian in h in < i+1, n 

Then (3) holds if (4) holds and if Hn 
- 0 as n -x oc. 

Proof. Since fn interpolates f at all points in fl n, condition (a) of Theorem 1 
holds. By Neuman and Schmidt [10, Theorem 4.2], 

Ilf - fni lalHn/4 + co(f; Hn) = O(Hn ) 
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so that condition (b) holds with An = Hn and v = ,u. To show condition (c) 
with a = A,t we assume that u < v and examine first the case u, V E [X,n tin] 
for some i. Then, 

fn(V) -fn(U) =(Cin(V) - Cin(u))(f(xi+i, n) - f(Xin)) 

+ a[(v - u) - hin(Cin(V) - Cin(U))]. 

But 
ICin(V) - Cin(U)I = I(V -U)(V + U - 2Xin)/(l - Ain)hin 

<2d- (v - U)lhin 
Hence, 

ifn(v) - fn(u)t < B,(v - u)h.'1 + B2(v-u) = O(jv-ul") 

and similarly if u, v E [tin, xv For u, v E Ji, u< tin<, we write 

fn(v) - fn(u) = fn(V) - fn(tin) + fn(tin) fn(u) 

and get the same result. For the case u E Jin, v E Jin' i < j, and the rest of 
the proof, refer to the proof of Corollary 1. 

Corollary 5. Let f E H. and let {fn } be the sequence of Bernstein polynomials 

fn(x) 2-nEf(1 + 2k/n)(n)(l +x)k(1 _X)nk. 
k=O 

Then (3) holds if 

(8) A/2 + y > 0. 
Proof. Clearly, f(+1) = 0. Furthermore, by Theorem 1 in [1], condition (c) 
holds with a = Au. Finally, by Theorem 1.6.1 in [8], llrnmI= O(n#/2), so that 
condition (b) holds with An = n-1 and v = ,/2. 

Corollary 6. Let f E H.,, let {Xn} be a sequence of point sets defined by 
Xn:-1 = Xon < Xin < ... < Xnn = 1 

with Lebesgue constants A(Xn) with respect to Lagrange interpolation, and let 
{fn} be the sequence of Lagrange interpolation polynomials interpolating f on 
the sets Xn . If A(Xn) = O(logn) , then (3) holds if(8) holds. If A(Xn) = 0(nT) 
for some T > 0, then (3) holds if P - z + 2y > 0. 
Proof. Since xOn = - 1 and xnn = 1 for all n, we have rn (? 1) = 0. Further- 
more, we have that 

lirnmi < (1 +A(Xn))Enf 

where Enf = I f - qn I and qn is the polynomial of degree n of best approxi- 
mation to f in the uniform norm. 

We consider first the case A(Xn) = 0(log n). Since by Jackson's theorem, 
Enf = O(n"'), it follows that lirn mI = 0(n'1 ) for any positive A,t < A. Now, 
by Kalandiya's theorem (see, e.g., [7, Lemma 1]), we have that 

w0(rn; t) = 0(tJ2/2) 
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for any positive 4u2 < u I. Hence, by Theorem 1, (3) holds if ,u2/2 + y > 0. 
However, if (8) holds, we can find y, j2 such that 0 < ii2 < 'I < , and such 
that ji2/2 + y > O. 

If A(X,) = O(n'), then lirnll = O(n"'+t), so that by Kalandiya's theorem, 
co(rn; t) = O(ta) with a < (,u - T)/2. The rest of the proof proceeds as before. 

Remark. Two examples of sets Xn such that A(Xn) = O(log n) are as follows: 

(1) xin are the zeros of (1 - x2)P(al")(x), where P(z"fl) is the Jacobi 
polynomial of degree n - 1 and -1/2 < a, /B < 3/2 [15]. 

(2) xin = sec(7r/(2n + 2))cos[7r - (2i + 1)7r/(2n + 2)], i = 0, ..., n, the 
so-called extended Chebyshev nodes [2]. 

Corollary 7. Let f E H. and let fn = Hnpq(f), p, q > 1, be the Hermite-Fejer 
interpolation polynomial with boundary conditions based on the zeros {xi, i = 

1, ... n} of the Jacobi polynomial Pn , which satisfy the following conditions: 

Hnpq (f; Xin) = f((Xin) Hnpq(f; Xin) =0, i = 1,*- , n, 

Hnpq(f; +1) = f(?1) 

Hn r) (f; 1) = O, r = 1, ...,) p-,HS(f;-1) =O, s=1 .,q1 

If p - 1.5 < a' < p - .5, q - 1.5 < ,< q - .5, then (3) holds when (8) holds. 
Proof. By Vertesi [14, Section 3.4.3], 

Irn(x)I =O()Z [co nf I ] i IcosO -2 

where x = cos6. This implies that llrnll = O(n-') when ,u < 1 and llrnll = 
O(logn/n) when , = 1 . Since rn(?l) = 0, we can proceed as in the proof of 
the first part of Corollary 6. 

4. OTHER UNIFORM CONVERGENCE RESULTS 

Criscuolo and Mastroianni [3] consider the CPV integral I(Tf ; A), where 

w(x) := y(x)w(x) 

and V(x) > 0 on J and satisfies 

2 
oj(V; t)tF1dt < oc. 

Since I(wff; A) = I Wx(X) f(x)-f(A) dx + IQ(T; A), they consider the approxi- 
mation to I (wUf; A) given by 

n x~~~ 
( (i) =1 H in 
i#k 
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where the jin are the Gaussian weights and Yin the Gaussian points corre- 
sponding to w, that is, the zeros of Pn (T; x), the polynomial orthogonal with 
respect to wT. The index k is the index of the point closest to A. The authors 
show in Theorem 2.1 and Corollary 2.3 that Qn (f; A) converges uniformly to 
I(Tf; A) for all A E (-1, 1) if (8) holds. 

In [4], these same authors approximate f by the Lagrange interpolating poly- 
nomial fn based on certain sets Xn . They show that if xin are the zeros of 
(1 - x2)pn (I (T; x), then (3) holds if (8) holds. On the other hand, if xin are 
the zeros of Pn+i (U; x), then (3) holds only when y1 := min(a, 1) > 0 and 

u + Y, > 1/2. 
We see that in both cases treated by these authors, the best uniform conver- 

gence results they can get require that (8) hold, which is the same requirement 
as in Corollaries 5-7, which deal with polynomial approximations to f . 

We conclude by remarking that Theorem 1 is also true for I(Wf; A). By 
inspecting the proof, we see that the only thing we need worry about is the 
behavior of I(w; A) in the neighborhoods of ?1 . We show that 

(10) I(Q; A) = 0((1 +7)7log(l ? A)) + C 

for A in a neighborhood of :F I , which is sufficient for our purposes. 
By Lemma 5.3 in [4], in a neighborhood of A = 1, 

m _ f (I -+m 2aa >0, 

I ; A) _ E -Pin =0 log[m- (l _ )-1/2 + 1], a = O, 

i-lI4k(-A 
a < O, 

for m > Mo, where juin, Yin, and k are as in (9). A corresponding result 
holds in a neighborhood of A = -1 with a replaced by ,6. By Lemma 3.4 in 
[3], 

,s- ,jlogm, a, 16>0, 
T=l in - w(A) logm, -1 < a, < 0, 

i#k | 

uniformly for A E (-1, 1) with similar estimates if a < 0 < 16. Hence, 
choosing m = Mo yields (10). Similarly, Theorem 1 is true for I(Wtf; A), 
where wZ'(x) := U(x)I log( 1 -x)p log(, +X)q, for any nonnegative integers p, q . 

Note added in proof. I am indebted to Professor Philippe L. Toint for the 
following remarks. From Theorem 1, it appears that the rapidity of convergence 
of fn to f plays a role in deciding when I(wfn; A) converges uniformly in 
(-1, 1) to I(wf; A). However, a simple observation shows that this is not 
the case, which implies that one can dispense with condition (b) in Theorem 
1. In fact, if we write Bn := Av, then Bn is also a sequence of positive 
numbers such that limn ,- Bn = 0 and IIrn IKI = O(Bn) . Since the restriction 
v < ,u in condition (b) is never used, we have always that v = 1. Hence 
we can replace p by a and condition (b) with the hypothesis that {fn} is 
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a sequence of approximations which converges uniformly to f in J. Thus, 
the rate of convergence of {f, } to f is irrelevant to the question of uniform 
convergence of I(wr,; A)). It is only the modulus of continuity, co(r,; t), that 
counts. Of course, in many cases, the Holder index ,u or r, depends on the rate 
of convergence of r, as in Examples 6 and 7 which use Kalandiya's Theorem 
to determine co(r,; t). However, in the case of Example 5 where {f, } is the 
sequence of Bernstein polynomial approximations to f, we get a stronger result, 
namely, that we have uniform convergence of I(wr,; A) in (- 1, 1) if ,u+ y > 0 
and not only for ,u/2 + y > 0. 
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